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Translating Low-Resource Languages by Vocabulary Adaptation
from Close Counterparts
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Some natural languages belong to the same family or share similar syntactic and/or semantic regularities.
This property persuades researchers to share computational models across languages and benefit from
high-quality models to boost existing low-performance counterparts. In this article, we follow a similar
idea, whereby we develop statistical and neural machine translation (MT) engines that are trained on
one language pair but are used to translate another language. First we train a reliable model for a high-
resource language, and then we exploit cross-lingual similarities and adapt the model to work for a close
language with almost zero resources. We chose Turkish (Tr) and Azeri or Azerbaijani (Az) as the proposed
pair in our experiments. Azeri suffers from lack of resources as there is almost no bilingual corpus for this
language. Via our techniques, we are able to train an engine for the Az→English (En) direction, which is
able to outperform all other existing models.
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1. INTRODUCTION

Machine translation (MT) by its nature is a very complicated process, as it has to deal
with syntactic, semantic, morphological, and many other types of linguistic complexi-
ties at the same time in more than one language. The problem becomes more severe
where source and target languages have considerable differences. Pre/post-translation
techniques are explored to mitigate these sorts of complexities, for example, if source
and target languages have different word-ordering systems pre-reordering is applied
to address the problem [Miceli-Barone and Attardi 2013], or if languages are mor-
phologically different, words on the complex (or rich) side are decomposed into simpler
subunits to balance the morphological symmetry [Goldwater and McClosky 2005]. Sim-
ilarly, there are solutions for syntactic [Yamada and Knight 2001] and semantic [Jones
et al. 2012] problems.
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All these solutions are applicable where corpora and tools (annotators, analysers,
parsers, etc.) are available. However, for some languages that are referred to as low-
resource languages, we do not have access to such data and technology. Usually, for
these cases processing knowledge is transferred from a high-quality model that relies
on a linguistically similar language. This means that a model is trained on one language
and then adapted to the language of interest. This approach is called transfer learning
[Pan and Yang 2010] and has been applied to many research fields, including natural
language processing (NLP). Jiang et al. [2015] applied transfer learning to part-of-
speech (POS) tagging and dependency parsing. First they train a POS tagger/parser on
a high-resource language, then they use the same model to annotate/parse languages
that suffer from data scarcity. To this end, they benefit from (i) English as an interlingua
to bridge languages, and (ii) word-alignment information to transfer the model to
the target language. After transferring they fine-tune the model via a small dataset
from the low-resource language. The whole process is called language and annotation
adaptation [Jiang et al. 2015]. The application of transfer learning is not limited to this
example alone, where Wang and Zheng [2015] reviewed different transfer-learning-
based models for many NLP tasks. However, models reviewed in their work do not
include MT and to the best of our knowledge, this work along with Zoph et al. [2016]
are the only models that study transfer learning for the problem of MT.

In this article, we use transfer learning for MT. Domain adaptation [Koehn and
Schroeder 2007] is a well-known example of MT transfer-learning, in which models
are fine-tuned to particular genres. MT engines cannot perform well when testing
conditions deviate from training conditions. The basic idea is to exploit in-domain
training data to adapt components of an already trained engine. This is a type of intra-
language transfer-learning but we are interested in inter-language models, namely the
models that are trained on a pair of languages but applied to other languages. Zoph
et al. [2016] proposed a model that exactly applies this idea and our work is based on
their model.

The model of Zoph et al. [2016] trains neural engines to translate different languages
into English. In their approach, first they select languages such as French or Spanish
for which there are plenty of resources available. After training a reliable translation
model (mother),1 it is adapted for low-resource languages (child). They replace the
vocabulary set of the source side in the mother model with a vocabulary set of the child
language. Vocabulary modification changes the mother model into another model to
translate the child language into English. Although translations generated by such
a modified model are not necessarily good, the model produced via this procedure is
a neural machine translation (NMT) engine for the child→En direction, which is a
noteworthy achievement. This is the first phase of the procedure. The next phase is to
adapt the model for the child language and improve its quality. To this end, a small set
of bilingual sentences (child↔English) are used to optimize the model with respect to
properties of the child language.

They considerably improved translation quality for their low-resource languages in
this way. Language pairs used in their research were randomly selected, which means
there may or may not be linguistic and structural similarities between mother and
child languages. However, they demonstrated via experimental investigations that
performance improves where mother and child languages are close to each other. We
expand this idea in our research.

In this article, we work on the translation of Azeri, which is a highly agglutinative
and morphologically rich language. Moreover, there are almost zero resources for this
language with just a handful of Azeri MT systems. These are the main reasons we

1X→English.
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targeted Azeri. Although Dilmanc2 [Fatullayev et al. 2008] was proposed as an MT
solution for this language, its performance is not satisfactory (see Section 4) and we
aim to achieve better results. To translate Azeri, we acquire translation knowledge
from an engine trained on Turkish, as these two languages are close to each other (see
Section 2) from a linguistic point of view. First, we develop NMT and statistical MT
(SMT) engines for Turkish, and then we adapt those models to work for Azeri. Although
Turkish is also considered as a low-resource language, there are many more resources
available for that language compared to Azeri. Furthermore, Turkish MT has been
investigated from different perspectives in recent years [El-Kahlout and Oflazer 2006;
Oflazer and El-Kahlout 2007; Avramidis and Koehn 2008; Bisazza and Federico 2009;
Yeniterzi and Oflazer 2010; Zoph et al. 2016], so we can rely on an engine trained on
Turkish as a mother model.

In this article, we report MT results for Azeri and apply deep learning technologies
to this language for the first time, which is the main contribution of this work. It is
interesting to see the performance of a newly emerging technology for such a language.
Deep-learning-based models can outperform conventional MT alternatives for well-
studied languages such as English and German [Bentivogli et al. 2016], but there
is no result for resource-poor languages such as Azeri. The structure of the article
for the next sections is organized as follows. Section 2 briefly describes Turkish and
Azeri and discusses why we are interested in applying NMT to these languages. The
fundamentals of NMT are also reviewed in the same section. Section 3 describes our
proposed models. Section 4 reports experimental results together with our findings,
and Section 5 concludes the article with some avenues for future work.

2. BACKGROUND

In this section, we briefly explain Turkish and Azeri, and why we use NMT. We also
explain the fundamentals of NMT. Both Turkish and Azeri are Turkic languages that
have very similar syntactic and semantic structures. They also share some morpho-
logical properties. Each of them can be viewed as a variation of the other one, but
this does not mean that these languages are exactly the same. There are fundamental
differences between these languages, some of which we briefly mention here. Some of
our examples in this section are taken from Öztopçu [1993]:

—Orthography and Phonology: Some words have almost the same form in both
languages but they vary in some characters, for example the Turkish sound “k” is
written as “x” or “q” in Azeri, such as in the Turkish word “dodak” meaning “lip,”
which is “dodaq” or “dodax” in Azeri.

—Morphology: Most of the differences between these languages are related to mor-
phological variations, for example, the Turkish suffix “-miş” (sounds /mi

∫
/) is “-ib” in

Azeri, such as in “gelmiş” and “gelib,” meaning “has come.”
—Vocabulary: Although a large set of words is shared between these languages, there

are some Azeri words that are either not found in Turkish or they have different
meanings, for example, “sabah” means “morning” in Turkish and “tomorrow” in
Azeri, or words such as “subay,” meaning “single,” do not exist in Turkish.

—Syntax: Both Turkish and Azeri are SOV (Subject–Object–Verb) languages, but
there are some syntactic patterns in Azeri that do not follow this structure. Usually,
these cases are less common or do not exist in Turkish, for example, “I1 know2 that3
you4 are5 going6 to7 a8 conference9” is “bilirəm1,2 ki3, konfransa7,8,9 gedirsən4,5,6”
in Azeri and “konferansa7,8,9 gittiğini4,5,6 biliyorum1,2,3” in Turkish (showing word
alignments with subscripts). There are probably more grammatical exceptions in

2http://dilmanc.az/en/translate.
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Azeri than Turkish, as Azeri has been affected by the grammar of other languages
such as Farsi (Persian) and Russian.

—Semantic: There are many phrases and sentences that share the same set of words
in both languages but have different meanings in each of them, for example, the
translation of “you look like my sister” in Azeri sounds like “you caress my sister”
in Turkish. An interesting point is that when the sentence is translated into these
languages, everything is exactly the same for both (words, orders, etc.). Each word
even has the same meaning and translation when context is disregarded, but when
they appear together they convey different meanings in each of these languages. As
another example, if we translate “the plane will be landing in 10 minutes” into Azeri,
the translation would be completely understandable for native Turkish speakers as
it consists of Turkish words but it sounds like “the plane will crash in 10 minutes” to
them.

As these examples show, these languages are different, but they can still borrow
words and linguistic knowledge from each other. Azeri is a language with more than
26 million speakers,3 but there is a limited amount of research work for this language,
which we believe is due to data scarcity. Motivated by such problems, we think that
cross-lingual similarities between Turkish and Azeri can enable us to benefit from
translation knowledge of Turkish for Azeri, and we decided to use NMT in this regard.
In neural approaches, everything is learned through training datasets and there is no
need for feature engineering. We only need to manipulate training datasets and the
engine itself tries to extract useful information, and it learns the new data distribution.
Accordingly, transfer learning is easily applicable in such models [Bengio 2012]. This
process is not very straightforward (and sometimes impossible) in conventional sta-
tistical models, as in the phrase-based SMT approach [Koehn et al. 2003] everything
including translation, language, and reordering models has to be modified, which could
even be as expensive as training a brand new model. For these reasons, we prefer to rely
on an NMT engine as the main model. However, we propose several SMT alternatives.
In the next section, we briefly review the fundamentals of NMT.

2.1. Neural Machine Translation (NMT)

Recently, NMT has emerged as a very powerful alternative for conventional SMT
models. Bentivogli et al. [2016] published their experimental results on the comparison
of SMT and NMT models and illustrated that for many cases NMT outperforms other
models. Similarly, there are other successful neural models such as Chung et al. [2016],
which achieved state-of-the-art results.

Neural models are not new in the field as Ñeco and Forcada [1996] proposed such a
solution 20 years ago. Other models [Schwenk et al. 2006; Kalchbrenner and Blunsom
2013] have also been proposed thereafter, but for the first time, Cho et al. [2014] and
Sutskever et al. [2014] were able to design effective architectures for MT. Such models
follow the encoder-decoder architecture. In the encoder-decoder approach two recurrent
neural networks (RNNs) are trained jointly to maximize the conditional probability
of a target sequence (candidate translation) y = y1, . . . , ym given a source sentence
x = x1, . . . , xn. Input words are sequentially processed one after another until the end
of the input string is reached. An encoder reads words and maps the input sequence
into a fixed-length representation. At each time step t, an input word is taken and the
hidden state is updated accordingly. This process can be formulated as in Equation (1):

ht = f
(
Ex[xt], ht−1

)
, (1)

3According to Wikipedia statistics for 2007 (https://en.wikipedia.org/wiki/Azerbaijani_language).
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where ht ∈ R
d is the hidden state (a vector) at the time step t and f (.) is a recurrent

function such as long short-term memory (LSTM) [Hochreiter and Schmidhuber 1997]
or gated recurrent unit (GRU) [Cho et al. 2014]. f (.) is responsible for updating the
hidden state of the layer and other associated units (if there are any, such as memory
units, etc.) Ex ∈ R

|Vx |×d is an embedding matrix for source symbols (d is the embedding
size). The embedding matrix is a look-up table whose cells are treated as network
parameters and updated during training. The embedding (numerical vector) for the
vth word in Vx (vocabulary) resides in the vth row of the table.

After processing all words in the source sequence, hn is a summary of the input
sequence that is referred to as the context vector (c). Another RNN is initialized by c
and tries to generate a target translation. One word is sampled from a target vocabulary
Vy at each time step. The decoder conditions the probability of selecting a target word
yt on the context vector, the last predicted target symbol, and the decoder’s state. This
can be formulated as in Equations (2):

yt = g(Ey[yt−1], st, c),
st = f (Ey[yt−1], st−1, c),

(2)

where st is the decoder’s hidden state. Since we compute the probability of selecting yt
as the target word, g(.) should provide a value in the range [0, 1]. The most common
function for g(.) is Softmax. Both encoder and decoder RNNs are trained jointly to max-
imize the log probability of generating a target translation y given an input sequence
x, so the training criterion can be defined as in Equation (3):

max
θ

1
K

K∑

k=1

log(yk|xk), (3)

where θ is a set of network parameters and K indicates the size of the training set.
As previously mentioned, recurrent functions in encoder-decoder models are not

normal mathematical functions. Simple RNNs are not powerful enough to capture
all information about sequences, so more powerful alternatives such as LSTM RNNs
are required. An LSTM unit mitigates the problem of long-distance dependencies by
augmenting a simple RNN with a memory vector mt ∈ R

d. More formally, an LSTM
unit takes xt, ht−1 and mt−1 as its input and produces ht and mt via the calculations in
Equations (4):

it = σ (Wixt + Uiht−1 + bi),
ft = σ (W f xt + U f ht−1 + bf ),
ot = σ (Woxt + Uoht−1 + bo),
gt = tanh(Wgxt + Ught−1 + bg),
mt = ft � mt−1 + it � gt,

ht = ot � tanh(mt),

(4)

where it, ft, and ot indicate the input, forget and output gates, respectively. σ (.) is
an element-wise sigmoid function and Wρ , Uρ , and bρ , ρ ∈ {i, f, o, g} are all network
parameters.

In the basic encoder-decoder architecture all input words contribute equally to the
decoding phase (they are all crammed in the hidden layer regardless of their importance
and impact on the target word), which is not true in reality. To generate a target word,
we know that a set of source words directly affect the decoder, while other words have a
weak or zero impact. This important feature does not exist in the basic encoder-decoder
architecture. Bahdanau et al. [2014] proposed an attention mechanism to address this
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shortcoming. At each time step t, an exclusive context vector is defined with respect
to hidden states of both the encoder and decoder. In this model the impact of words is
incorporated by assigning weight values. Therefore, Equations (2) can be rewritten as
in Equations (5):

yt = g(Ey[yt−1], st, ct),
st = f (Ey[yt−1], st−1, ct),

(5)

where ct is exclusively generated for each time step based on ht and st, and is defined
as in Equation (6):

ct =
n∑

j=t̂

αtt̂ht̂, (6)

where αtt̂ is a weight value and is defined as in Equations (7):

αtt̂ = exp(ett̂)∑n
j=1 exp(etj)

,

ett̂ = s(ht̂, st−1),
(7)

where e(.) is an alignment model that scores the relevance of source words given st. a(.)
is a combinatorial function modeled via a feed-forward connection. Given the demon-
strable benefit of this additional component, the NMT engine used in our experiments
is an encoder-decoder model with attention.

3. PROPOSED MODEL

We designed different SMT and NMT models for our experiments. The main focus of
the article is to transfer the neural model from the Tr→En direction to the Az→En
direction. We also trained a number of SMT models along with our neural engine to
provide better comparisons of different settings. Since the SMT architecture is quite
clear, we explain only the neural model in this section.

Our NMT model relies on that of Zoph et al. [2016], in which they first train a high-
quality translation engine for the French→En setting, then transfer the translation
model for a child→En direction. To transfer the model, a small set of child→En bilin-
gual sentences is used to fine-tune the parameter set of the mother model. NMT engines
(and deep neural models in general) are data-hungry models, so a massive amount of
data is required to set network parameters and reach the final configuration. This is
not affordable for languages that suffer from data scarcity. Moreover, training a neural
model for sparse datasets is quite challenging. If one side of the translation model be-
longs to a morphologically rich language or has a very large vocabulary, then it is hard
to find a precise configuration between input and output feature spaces (translating
the source language into the target language).4

To address these problems, Zoph et al. [2016] used an existing mother model as a
base rather than training a new model based on the child language. The intuition
behind the model is that the base model provides a prior distribution that preserves
useful information from which the child NMT engine can start its optimization. In the
basic model, the mother vocabulary set Ex is substituted by a vocabulary set of a new
child model Enew without any assumption and preprocessing (random substitution).
This model could work for our case too, but as we focus on similar language pairs,
we can benefit from linguistic similarities and reach a better result. In our case, first

4Unfortunately, we have to confront all of these problems (less data, sparse data set, and large vocabulary)
in Azeri.
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we extract the vocabulary sets from training corpora. Vtr and Vaz are the vocabulary
sets belonging to the Turkish and Azeri languages, respectively. By use of a dictionary
(bilingual lexicon), we automatically find word translations between the two vocabulary
sets. Any type of dictionary or MT model can be used in this regard,5 which we use an
SMT model (see Section 4 for more details). What we obtain from this procedure is a set
of word-level alignments, such as WT = {(wtr

i ⇒ waz
j ); wtr

i ∈ Vtr & waz
j ∈ Vaz}, in which

wtr
i and waz

j are translationally equivalent. We use these alignments in our transfer
process to substitute vocabulary sets in a better way (than a random substitution).

After creating the alignment set WT , we stem all Turkish words. The process is
simply denoted with a �→ b, where b is a stem form of a. Turkish is an agglutinative
language, so several affixes could be sequentially added to a stem to generate new
variations of the word, but the base meaning stays the same, for example, “oda” mean-
ing “room” could be extended with additional affixes such as in “oda+m” (my room) or
“oda+m+da” (in my room), but they all convey the base meaning “room.” The reason
we stem Turkish words is that in the stemmed form the number of unique Turkish
tokens is considerably decreased, which means the complexity is mitigated accordingly.
In the presence of surface forms, we have to find inflected and precise counterparts of
Turkish words from the Azeri vocabulary set (via the alignments), which is impossible
for most words. We mentioned that Azeri is a low-resource language, and we are not
able to provide such a rich vocabulary for Azeri. Accordingly, by stemming we deal with
a limited set of Turkish tokens and it is practicable to find their Azeri peers. Although
this simplification is very impactful, this is not the main reason to stem Turkish words.

As previously mentioned, the main motivation behind proposing our model is to
feed a child model with high-level translation knowledge, which comes from a mother
model. In such a scenario, gisting could be sufficient, as we do not expect the mother
model to provide its child with fluent translations. If the goal is to translate Turkish
into English, then all inflected forms have their own impact on the final translation
and stemming Turkish words degrades performance, while in our approach the mother
model is (only) supposed to steer us toward a point close to the target translation.
Accordingly, an approximate estimation of the word could be enough, for example, in
the aforementioned example the mother model should be able to generate alternatives
such as rooms, my room, or indeed any other related translations. The main model
that is responsible for translating Azeri into English is fed by such information, and
based on the inflected inputs (in Azeri) and context, it decides on the surface form of
the final translation. This is the main intuition behind stemming. We do not want to
confuse/mislead the Azeri model with complex morphological forms of Turkish words.
We produce the base translation based on stemmed forms, which conveys high-level
meanings and provide approximately correct translations. Then the main Azeri model
uses the base translation together with its own knowledge to select the best target
word.

After substituting the Turkish vocabulary set with its Azeri version, we use a small
set of Az→En sentences to tune the model (mother) to transfer its Turkish side to Azeri
(child). If the Turkish side is based on a large number of morphologically rich words,
then it would preserve sparse and quite complicated information. It is hard to transfer
such a complex feature space via a small set of Az→En sentences, but when the source
side is based on a limited number of tokens with simple stem forms, we can expect the
same small set to dominate and transform the existing distribution to its own distribu-
tion. The point of having prior Turkish knowledge in the model is (again) because of the

5An example of using Google Translate to map Turkish words to Azeri words: https://translate.google.
com/#tr/az/erkekler. We perform the same process using our SMT model.
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Table I. The First Column Shows the Different Corpora
Used in Our Experiments, and the Second Column Shows

from Which Collections They Are Selected. T Stands
for Tanzil and O Stands for OpenSubtitle2016.

The Fourth Column Shows the Size of the Training Set

Corpus Collection Language Pair Size
Corpus1 T Az–En 268K
Corpus2 T Az–Tr 186K
Corpus3 T Tr–En 1.17M
Corpus4 O Tr–En 4.50M
Corpus5 T + O Tr–En 5.67M

size of the small data set. By such a priori distribution, we try to provide an approxi-
mately correct initialization point for the Azeri model from which we can start and use
the the small data set to reach the final Azeri distribution/configuration. If we were to
start from the beginning (an empty encoder with no prior distribution/configuration),
then it would be almost impossible to capture such a distribution by use of the small
Azeri set (only).

We train the mother model for the Tr→En direction with Turkish stems. This means
that we do not change the English side but Turkish words are substituted with their
stems. Together with the WT set, this is the second change that helps us achieve better
results. After training the mother model, we replace the source vocabulary set Str (set
of Turkish stems) with Eaz. Zoph et al. [2016] substitute the two sets without any
assumption, whereas we provide a more informed substitution based on the WT set
and stems. Words are represented via vectors in neural models, so we have a vector for
each stem in the source side. In the substitution phase, for each Azeri word waz

j ∈ Vaz,
we select the stem vector of its translation to assign, that is, if wtr

i ⇒ waz
j , then the

vector for waz
j is initialized with σi where wtr

i �→ σi. In the proposed model, network
parameters are trained based on simple stem forms without paying attention to (fine-
grained) morphological variations. According to our experimental results this type of
substitution helps us converge faster and improves the model’s quality.

4. EXPERIMENTS

4.1. SMT Experiments

We perform several experiments to evaluate our models. As previously mentioned, the
goal of the article is to design SMT and NMT engines for the Az→En direction. In
our experiments, we use different bilingual corpora whose information is provided in
Table I.

Corpus1 is the largest bilingual corpus available for the En–Az pair, which is a part
of the Tanzil collection [Tiedemann 2012].6 Corpus2 and Corpus3 are also from the
same collection. Tanzil includes the Quran’s translations into different languages, so
Corpus1, Corpus2, and Corpus3 are from the same text and genre but from differ-
ent parts. These corpora are clearly related to each other but are not eachother’s exact
translations. Corpus4 is a corpus of 4.5M sentences selected from the OpenSubtitle2016
collection7 Lison and Tiedemann [2016], and Corpus5 is the combination of Corpus3
and Corpus4. The size of the training set for each corpus is reported in Table I and
the test and validation sets include 2K and 3K sentences, respectively (for all exper-
iments). The test and validation sets are selected from the same collection to which
the training corpus belongs, for example, TestSet3 and TestSet4 include 2K sentences,

6http://opus.lingfil.uu.se/Tanzil.php.
7http://opus.lingfil.uu.se/OpenSubtitles2016.php.
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which the first one was selected from the Tanzil collection and the second one from the
OpenSubtitle2016 collection. The test and validation sets for Corpus3 and Corpus5 are
the same.

Using corpora, we train different SMT models. As we previously mentioned, the
main focus is on the neural model, and we accompany the main model with other
SMT models for comparative purposes. To this end, first we clean and normalize the
corpora by our in-house normalizer, as existing models might not support especial
encodings of Turkish and Azeri. We replace all digits with a special token Digit and
convert infrequent words (occurring less than five times) into UNK. We also lowercase
all words.8

We use Moses [Koehn et al. 2007] with its default configuration and 5g language
models trained by the SRILM toolkit [Stolcke 2002]. Language models are trained on
the target sides of the corpora. We tune translation engines with MERT [Och 2003]. To
evaluate our models, we report their performance based on BLEU [Papineni et al. 2002],
which is the most frequently used metric in the field. We have a number of different
systems9: Az2EnT was trained on Corpus1 for the Az→En direction and provides a
BLEU score of 20.16. Although Corpus1 is not large enough to train a robust and
reliable SMT engine, it yields an acceptable performance. We consider Az2EnT as
the main baseline in our experiments and try to find solutions (using Turkish) to
outperform its performance.

We have three Tr→En engines, which we wish to fine-tune for Azeri to surpass the
existing baseline system. Tr2EnT was trained on Corpus3 and evaluated on TestSet3,
for which the BLEU score is 23.71. Tr2EnO is a similar system for the same direction
trained on a quite large(r) corpus (Corpus4) and its performance on its own test set is
27.11. Both of these systems work for the Tr→En direction, and we have two corpora for
this direction. We can combine these two corpora to have a better and more powerful
Tr→En model. The result of the combination is Tr2EnT +O, which performs with a
BLEU score of 25.78 (for TestSet3). This combination was useful and leads to an
improvement form 23.71 to 25.78 (+2.07). Tr2EnT +O was trained with Corpus5, fine-
tuned with DevSet3 (validation set of Tr2EnT ) and evaluated on TestSet3. The reason
we use these test and validation sets for Tr2EnT +O is that we tend to benefit from this
system (which is the best existing Tr→En model) to improve the translation quality
of the Az→En direction. The test set for the Az→En system (Az2EnT ) belongs to the
Tanzil collection, so to tune Tr2EnT +O, it is better to have test and validation sets from
the same data distribution (the same collection).

The main goal behind training different SMT models is to investigate whether we
can benefit from a Turkish model for Azeri, so the idea is to use Tr2EnT +O instead of (or
together with) Az2EnT to provide better results for the Az→En direction. Although we
know that Azeri and Turkish are closely related languages, this closeness is not very
clear for Moses, because the quality of translation is not as satisfactory as we expected,
so the BLEU score obtained by our SMT models is 29.68 for Az→Tr and 32.33 for the
opposite direction. This means that Moses treats this pair as two different languages
and Tr2EnT +O cannot be directly used to translate Azeri. To exploit Tr2EnT +O, we
rely on Turkish as a pivot language. First the Azeri test set (TestSet1) is translated
into Turkish via Az2TrT (trained using Corpus2). The translation generated by this
process is referred to as Trp. Then, Tr2EnT +O is used to translate Trp into English.

8Basically, our normalizer is almost the same as that of Moses, but because of special characters and
encodings, we developed our own variant.
9The name of each system includes the acronyms of the source and target languages. We also have a subscript
that provides additional information about the collection or the technique used to train the model.
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This process can be summarized as follows:

Az
Az2TrT−−−−→Trp

Tr2EnT +O−−−−−−→En.

In this setting, Az is TestSet1, which is translated into Turkish (Trp) via Az2TrT (shown
above the arrow), and Tr2EnT +O translates Trp into English. The BLEU score obtained
by this process is 14.78.

This pivoting system is not able to surpass the baseline result but it is a valuable
achievement as it relies on Turkish to assist the translation process and provides in-
formation about properties of Turkish and Azeri. Pivoting is used to translate between
two languages (such as L1 and L2) by use of another bridge languages (L3), where there
is no bilingual corpus for the L1–L2 pair. In the presence of high-quality engines for
the L1 → L3 and L3 → L2 directions, pivoting can improve MT quality [El Kholy et al.
2013], but because our Az→Tr engine (Az2TrT ) is not a very precise model, pivoting
could not help too much.

There is another technique that might be more useful than pivoting. Instead of
translating the Azeri test set, we can translate the phrase table. Tr2EnT +O is a high-
quality engine for the Tr→En direction. If we can manipulate its phrase table and tune
it for Azeri, then it could perform well for the Az→En direction too. The phrase table
of Tr2EnT +O includes bilingual Tr–En phrases. Using Tr2AzT (trained on Corpus2),
we translate Turkish phrases into Azeri. This part could be interpreted as a sample of
transfer learning for a Tr→En model. To transfer an SMT model, we need to manipulate
(i) the translation function, (ii) the language model, and (iii) the reordering function.
The word-ordering system is the same for Azeri and Turkish, so we do not need to
change anything in this regard. Similarly, since the target language is always English
in our experiments, we do not need to change language models. We only train a new
language model with the English sides of Corpus1 and Corpus5 to obtain better results.
So far, we have all the required components (word reordering and language modeling)
but the translation function. To transfer the translation function, we translate the
phrase table. We use Tr2AzT and translate each Turkish phrase in the phrase table (of
Tr2EnT +O). The system obtained from this process outperforms the results produced
by pivoting with a BLEU score of 18.12. This system is referred to as Az2Enph.t. With
different combinations and trying several configurations, we could gradually improve
the performance for Az→En, but these combinatorial (hybrid) models are still not able
to outperform the baseline model.

We have Az2EnT for Az→En, which is our main model and can be viewed as an
in-domain model. We also have an additional model (Az2Enph.t) for the same direction,
which relies on Turkish and was trained on a different corpus. This second engine can
be viewed as an out-of-domain model. There are SMT techniques to combine multiple
translation systems to benefit from the strengths of the all models. Through such
a combination, we can generate a better translation as the out-domain system can
provide something useful that is missed in the in-domain model. We combine Az2EnT
and Az2Enph.t using the fill-up10 technique [Bisazza et al. 2011]. The result of this
combination is Az2En fl.u, which improves Az2EnT by +0.53 BLEU points. Table II
summarizes all the aforementioned configurations.

Based on the BLEU scores reported in Table II, Az2En fl.u has the best performance,
which benefits from both Turkish and Azeri. We also report the performance of Google
translate (GT) and Dilmanc (rule-based) for the same test set, which perform signifi-
cantly worse than ours.

10http://www.statmt.org/moses/?n=Advanced.Models#ntoc7.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 16, No. 4, Article 29, Publication date: September 2017.

http://www.statmt.org/moses/?n$=$Advanced.Models#ntoc7


Translating Low-Resource Languages by Vocabulary Adaptation from Close Counterparts 29:11

Table II. Different Non-neural MT Models for the Az→En Direction.
Improvements Reported for the Systems Are Statistically Significant

According to Paired Bootstrap Re-sampling [Koehn 2004] with p = 0.05

System Description BLEU
1 Az2EnT (baseline) Az→En (Corpus1) 20.16

2 Pivoting Az
Az2TrT−−−−→Trp

Tr2EnT +O−−−−−−→En 14.78
3 Az2Enph.t Phrase-table translation 18.12
4 Az2En fl.u Fill-up (Az2EnT and Az2Enph.t) 20.69
5 Google Translate Az→En 14.20
6 Dilmanc Az→En 10.00

4.2. NMT Experiments

We tried different SMT configurations and were able to improve the Az→En baseline
model. We are interested in studying the same problem in the field of NMT and investi-
gate whether we can propose an Azeri model based on Turkish. Because of the flexible
architecture of NMT models, we believe that it is possible and even more feasible to
propose such a solution.

First, we train a model using Turkish stems and English words for the Tr→En
direction (motherstm

tr ). Then, we use a set of Az–En sentences to transfer motherstm
tr to

work for the Az→En direction (childstm
az ). For the first part, we use Corpus4 and the

second part Corpus1. In all of our experiments, we use a two-layer encoder-decoder
model with attention. The size of the LSTM units is 1000 and the mini-batch size is
128. We have a dropout layer with p = 0.2 on the decoder side. The initial learning rate
is set to 0.5 with a decay rate of 0.5. We change the learning rate if the development
perplexity does not improve. The network was trained using Adam [Kingma and Ba
2015]. To fine-tune motherstm

tr , we re-train it with Az→En sentences for 100 epochs.
We clip the gradient when the gradient norm is greater than 1.0. All parameters are
initialized in the range [−0.08,+0.08]. To stem Turkish words, we use a stemmer11

designed on finite state machines [Eryigit and Adali 2004].
For Een, we select all unique English words (types) from the En–Az dataset along

with the 20K most frequent types in the En–Tr set (40K in total). For Eaz, we select
all Azeri types (25K), and for Etr, we keep the 50K most frequent types. The motherstm

tr
model finds a mapping from Str (Turkish stem) to Een (English word). In the transfer
phase, we initialize Eaz with Str by using WT (see Section 3). If we cannot find a
counterpart for any member within Eaz, then we initialize it with a null embedding
(specific embedding trained during training). The BLEU score for motherstm

tr is 29.17
and its child model (childstm

az ) performs with 21.93, which is a better result than those
of Az2EnT (baseline) and Az2En fl.u (best system).

In motherstm
tr , we stemmed Turkish words, because it helps us achieve a better result.

Before stemming, we had 510K types in the Turkish corpus, which is almost 2.5 times
bigger than that of the stemmed corpus (197K). As we have described, stemming
considerably mitigates the complexity. Without any pre-processing (no stemming), we
selected the top-50K words from the Turkish side and trained a new neural model
(motherwrd

tr ). The BLEU score for motherwrd
tr is 28.21 and the child model (childwrd

az )
trained based on motherwrd

tr obtains a BLEU score of 21.11, which shows our stemming
technique is useful.

So far, childstm
az performs better than our other models, but there is a way to improve it

further. We apply one additional fine-tuning step to provide a better prior distribution
in motherstm

tr . After training motherstm
tr , first we tune12 the model (first tuning) with the

11https://github.com/otuncelli/turkish-stemmer-python.
12In our setting, tuning means retraining the existing model with a new dataset for 100 epochs.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 16, No. 4, Article 29, Publication date: September 2017.

https://github.com/otuncelli/turkish-stemmer-python


29:12 P. Passban et al.

Table III. Results from NMT Engines for the Az→En Direction

System Description BLEU
1 childstm

az based on motherstm
tr 21.93

2 childwrd
az based on motherwrd

tr 21.11
3 childdbl

az using motherstm
tr with double tuning 22.30

Table IV. The Best SMT and NMT Results
for the Az→En Direction

Approach System BLEU
Baseline Az2EnT 20.16
SMT Az2En fl.u 20.69

NMT childdbl
az 22.30

Turkish version of the Tanzil data set (Corpus3). motherstm
tr is a model based on the

OpenSubtitle collection. By tuning the same model with the Tanzil collection, we try
to change its distribution and push it closer to that of Tanzil. The model would then be
a Tr→En model, which is “aware of” concepts (words, syntax, semantic, etc.) existing
in Tanzil. Then, we use the Azeri set to perform the second round of tuning. The
Azeri set also comes from the Tanzil collection. By our double-refinement process, first
we try to transfer the OpenSubtitle-based Turkish model (Turkish model trained on
OpenSubtitle) to its Tanzil-based version (Turkish model trained on Tanzil). We then
substituted the Turkish model with an Azeri model from the same data distribution
(Azeri model trained on Tanzil). In the previous configuration, we changed the
language and domain at the same time (one pass of tuning), but in this configuration,
first we change the domain and then the language of the model. This double-stage
mechanism is able to provide a better model (childdbl

az ) with a better BLEU score of
22.30, 0.37 points higher than 21.93. Results for our neural models are reported in
Table III and the best results from the all configurations are summarized in Table IV.

5. CONCLUSION AND FUTURE WORK

In this article, we reported several SMT and NMT configurations for translating from
Azeri into English. Since Azeri is a low-resource language, we trained models on Turk-
ish and fine-tuned them for Azeri. Priori to our investigation, we were expecting that
as Turkish and Azeri are so close to one other, we ought to be able to easily benefit
from Turkish models for Azeri; in the worst case, we thought we might only need slight
adaptations to use Turkish for Azeri. However, this did not happen in practice and
Moses could not recognize the relation/closeness between these languages. We tried to
translate these languages into each other, but despite their having lots of linguistic
similarities (word order, words, grammatical structures, etc.), the translation quality
for this pair was not very good. This fact shows that the similarity is obvious for us (hu-
man user) but it should be encoded for the machine. Accordingly, we could not directly
use either Turkish or Azeri to boost the translation model of the other one and had to
propose SMT and NMT techniques to make a bridge between Turkish and Azeri mod-
els. We applied pivoting and translated Turkish phrase tables to be used for Azeri. We
combined training corpora and even translation models to achieve better results. We
used the fill-up technique and improved the baseline model for the Az→En direction.

Apart from our SMT models, we also trained some neural models and applied transfer
learning and vocabulary adaptation. The base NMT model was trained on a Tr–EN
corpus and converted to an Az→En model through a tuning phase. The NMT model
trained by our technique is able to provide the best result of all systems evaluated.
This is the first time that an NMT model has been proposed and evaluated for Azeri.
However, our models are not limited to these languages and can be used for any other
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closely related pairs. For future work, we plan to make better connections between
Turkish and Azeri. In our models, we focused more on MT architectures, whereas it
is possible to propose solutions to better connect close languages and transfer close
structures. We also plan to expand our work for other NLP tasks apart from MT; for
example, it is possible to rely on close languages and propose taggers or parsers for
Azeri.
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Wenbin Jiang, Yajuan Lü, Liang Huang, and Qun Liu. 2015. Automatic adaptation of annotations. Comput.
Linguist. 41, 1 (2015), 119–147.

Bevan Jones, Jacob Andreas, Daniel Bauer, Karl Moritz Hermann, and Kevin Knight. 2012. Semantics-based
machine translation with hyperedge replacement grammars. In Proceedings of the 24th International
Conference on Computational Linguistics. 1359–1376.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent continuous translation models. In Proceedings of the
2013 Conference on Empirical Methods in Natural Language Processing. 1700–1709.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 16, No. 4, Article 29, Publication date: September 2017.

https://www.ichec.ie/
https://www.ichec.ie/


29:14 P. Passban et al.

Diederik Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In Proceedings of the
International Conference on Learning Representations (ICLR’15).

Philipp Koehn. 2004. Statistical significance tests for machine translation evaluation. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing. 388–395.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open source toolkit for statistical machine translation.
In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions. 177–180.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-based translation. In Pro-
ceedings of the 2003 Conference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology-Volume 1. 48–54.

Philipp Koehn and Josh Schroeder. 2007. Experiments in domain adaptation for statistical machine trans-
lation. In Proceedings of the 2nd Workshop on Statistical Machine Translation. 224–227.

Pierre Lison and Jrg Tiedemann. 2016. OpenSubtitles2016: Extracting large parallel corpora from movie and
TV subtitles. In Proceedings of the 10th International Conference on Language Resources and Evaluation
(LREC’16). 923–929.

Antonio Valerio Miceli-Barone and Giuseppe Attardi. 2013. Pre-reordering for machine translation using
transition-based walks on dependency parse trees. In Proceedings of the Eighth Workshop on Statistical
Machine Translation. 162–167.
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